If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+4r-20=0
a = 1; b = 4; c = -20;
Δ = b2-4ac
Δ = 42-4·1·(-20)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{6}}{2*1}=\frac{-4-4\sqrt{6}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{6}}{2*1}=\frac{-4+4\sqrt{6}}{2} $
| 5-1/6(x+4)=4x | | -23=-5x+-3 | | (45•8)5x-19=12x | | -23=5x+-3 | | 105-21=x | | 3(x-7)×5=32 | | w+11=6w/2 | | -18=-03y | | (6x-21)+75=105 | | 8/p=1.1 | | -12x=9(x+2.13) | | a+2.7=-7.1 | | 3=-14n | | p=(2p-48)/2 | | 1/5(x+0.5)+5.24=3/2x+7/10(x+22) | | 4x=60.x | | X+.08x=328 | | -2n-0n-4=0 | | 4w-8+4w-44=180 | | -2/5w-3/5=1/5 | | -7=5+3n+3n | | 5^(2x-3)=10^(x+2) | | 0.6(10x+22)=4(0.2x+5) | | 85+(6x+5)=180 | | 3+n/3=15 | | 1.5÷n=5 | | 5(2x+3)=7(8x+3) | | 1.4(2x-5)=-2.2x-9.2 | | -0.6+y=8 | | 3x+1=3x-15 | | 4x+30=2x+26 | | 34x+7-2=22 |